Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors.
نویسندگان
چکیده
The transcription factor Sox9 is expressed in all chondroprogenitors and has an essential role in chondrogenesis. Sox9 is also expressed in other tissues, including central nervous system, neural crest, intestine, pancreas, testis, and endocardial cushions, and plays a crucial role in cell proliferation and differentiation in several of these tissues. To determine the cell fate of Sox9-expressing cells during mouse embryogenesis, we generated mice in which a Cre recombinase gene preceded by an internal ribosome entry site was inserted into the 3' untranslated region of the Sox9 gene (Sox9-Cre knock-in). In the developing skeleton, Sox9 was expressed before Runx2, an early osteoblast marker gene. Cell fate mapping by using Sox9-Cre;ROSA26 reporter (R26R) mice revealed that Sox9-expressing limb bud mesenchymal cells gave rise to both chondrocytes and osteoblasts. Furthermore, a mutant in which the Osterix gene was inactivated in Sox9-expressing cells exhibited a lack of endochondral and intramembranous ossification and a lack of mature osteoblasts comparable with Osterix-null mutants. In addition, Sox9-expressing limb bud mesenchymal cells also contributed to tendon and synovium formation. By using Sox9-Cre;R26R mice, we also were able to systematically follow Sox9-expressing cells from embryonic day 8.0 to 17.0. Our results showed that Sox9-expressing cells contributed to the formation of all cell types of the spinal cord, epithelium of the intestine, pancreas, and mesenchyme of the testis. Thus, our results strongly suggest that all osteo-chondroprogenitor cells, as well as progenitors in a variety of tissues, are derived from Sox9-expressing precursors during mouse embryogenesis.
منابع مشابه
Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes.
Osteoblasts and chondrocytes are involved in building up the vertebrate skeleton and are thought to differentiate from a common mesenchymal precursor, the osteo-chondroprogenitor. Although numerous transcription factors involved in chondrocyte and osteoblast differentiation have been identified, little is known about the signals controlling lineage decisions of the two cell types. Here, we show...
متن کاملReprogramming of Dermal Fibroblasts into Osteo-Chondrogenic Cells with Elevated Osteogenic Potency by Defined Transcription Factors
Recent studies using defined transcription factors to convert skin fibroblasts into chondrocytes have raised the question of whether osteo-chondroprogenitors expressing SOX9 and RUNX2 could also be generated during the course of the reprogramming process. Here, we demonstrated that doxycycline-inducible expression of reprogramming factors (KLF4 [K] and c-MYC [M]) for 6 days were sufficient to c...
متن کاملMatrilin-3 Chondrodysplasia Mutations Cause Attenuated Chondrogenesis, Premature Hypertrophy and Aberrant Response to TGF-β in Chondroprogenitor Cells
Studies have shown that mutations in the matrilin-3 gene (MATN3) are associated with multiple epiphyseal dysplasia (MED) and spondyloepimetaphyseal dysplasia (SEMD). We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT) MATN3 underwent sponta...
متن کاملArticular Chondroprogenitor Cells Maintain Chondrogenic Potential but Fail to Form a Functional Matrix When Implanted Into Muscles of SCID Mice
OBJECTIVE Articular cartilage is a complex tissue comprising phenotypically distinct zones. Research has identified the presence of a progenitor cell population in the surface zone of immature articular cartilage. The aim of the present study was to determine the in vivo plasticity of articular cartilage progenitor. DESIGN Chondropogenitor cells were isolated from bovine metacarpalphalangeal ...
متن کاملInhibition of Phosphate-Induced Vascular Smooth Muscle Cell Osteo-/Chondrogenic Signaling and Calcification by Bafilomycin A1 and Methylamine.
BACKGROUND/AIMS Excessive phosphate concentrations trigger vascular calcification, an active process promoted by osteoinduction of vascular smooth muscle cells (VSMCs) with increased expression and activity of transcription factor RUNX2 (Core-binding factor α1, CBFA1), alkaline phosphatase (ALPL), TGFß1, transcription factor NFAT5, and NFAT5-sensitive transcription factor SOX9. The osteoinducti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 41 شماره
صفحات -
تاریخ انتشار 2005